Distribute Plugin — User Guide

Michael Simon

June 18, 2016



Contents




List of Figures

o o D



Chapter 1

Setup

1.1 Running Multiple Connected RENEW Processes

First, the distribute registry has to be started. For listening on the default port 1099 execute

> sh startRegistry.sh

Alternatively, to define a specific port execute

> java -Dde.renew.distribute.createRegistry=<port> -jar loader.jar \
keepalive on

This starts a new RENEW process which provides a distribute registry to other RENEW
processes and is kept alive, but does nothing elsel] The given port is used to listen for
connection attempts from the other RENEW processes. If =<port> is omitted, the default
port 1099 is usedd This RENEW process must be kept running while other processes are
connected. A & may be appended to the line to run the process in the background.

Additional RENEW processes may be started locally or remotely and connected to the
distribute registry by executing

> java -Dde.renew.distribute.registryHost=<hostname >:<port> -jar \
loader. jar gui

:<port> can be omitted, if the default port 1099 is used and the whole registryHost argument
can be omitted, if additionally the distribute registry runs on the same host.

Make sure that the RENEW processes can access each other through TCP. Any firewalls
should be configured accordingly. This can be quite difficult, e.g. the default firewall config-
uration for active VPN connections of the Macintosh Operating System prevents connections
even to the local host. The inability of a RENEW process to connect to the distribute registry
may result in an exceptionally long waiting time at the startup before the connection attempt
times out.

Some common errors in the RMI interaction of the RENEW processes can be fixed by
adding the argument -Djava.rmi.server.hostname=<address> before the -jar argument,
where <address> is the network address by which the other RENEW processes can reach the
local host.

1See |2, Subsection 2.4.1] for details on starting RENEW.
2A RMI registry is created internally to connect the additional RENEW processes to the distribute registry.
1099 is the default port for a RMI registry.




1.2 (De)activation

When the DISTRIBUTE plugin is loaded, it automatically sets the active formalism to Dis-
tribute Java Compiler. For all practical purposes, the DISTRIBUTE plugin can be disabled for
the simulation by selecting another formalism.



Chapter 2

Modeling

The main functionality of RENEW is provided by its Java Reference Net formalism. It allows
for Petri Nets with Java as an inscription language. Net instances may also contain other
net instances and interact with them through synchronous channels. The Java Reference Net
formalism is described in |2 Chapter 3] and the theoretical and implementation details are
given in [I] (in German). The implementation is also described in [3| Chapter 3].

The DISTRIBUTE Plugin provides another formalism which extends the Java Reference
Net formalism conservatively. For the initial exchange of net instance references it provides
simple Java classes and interfaces.

2.1 Exchanging Remote Net Instances

The DISTRIBUTE Plugin provides the de.renew.distribute.DistributeNetInstance interface
to reference a specific net instance in a remote RENEW process. An initial exchange of net
instance references can be facilitated by a de.renew.distribute.DistributeRegistry object.
RENEW processes that were set up according to Section [[LT]share the same distribute registry
and thus can exchange references to net instances among themselves. In each RENEW process
the same distribute registry is returned by the static method de.renew.distribute.Distribute-
Plugin.getRegistry() 1 Remote net instances can be registered at the distribute registry with
the method registerNetInstance(Serializable, DistributeNetInstance) and retrieved with the
method getNetInstance(Serializable). In both cases the first argument is an arbitrary key.

The functionality described above is not provided by the formalism, but by normal Java
methods. Because they have side effects (changing the registered net instances), they should
only be called inside a net from within action inscriptions. The receiver example net in
Figure 2.1 registers itself at a distribute registry. The sender example net in Figure
retrieves this remote net reference.

2.2 Send Channels

The Java Reference Net formalism provides synchronous channels to synchronously fire mul-
tiple transitions. Parameters can be defined to exchange data between the transitions. A
synchronous channel is called by a downlink inscription that specifies a net instance, a channel
name and the parameters, e.g. net:ch(a,b,c). In the specified net instance a corresponding up-
link transition is sought. It specifies the channel name and the parameters at that transitions
side, e.g. :ch(x,y,z). The parameters of both sides get unified and a binding of the variables of
both transitions is searched and determines the mode they are fired in. Synchronous channels

LA single distribute registry is made remotely accessible by RMI.



import de.renew.distribute.DistributePlugin;
String str;

action DistributePlugin.getRegistry()
.registerNetInstance("simple_receiver”,
DistributePlugin.wrap(this));
register

:s(str) received
synchronize

Figure 2.1: A receiver net with a channel uplink.

import de.renew.distribute.DistributePlugin;
import de.renew.distribute.DistributeNetInstance;
DistributeNetInstance ni;

action ni = DistributePlugin.getRegistry()
.getNetInstance("simple_receiver");
retrieve receiver instance
ni

synchronize nils("foo");

Figure 2.2: A sender net with a send channel downlink.



allow for data flow in any direction ] They are introduced in [2 Section 3.7].

Normal downlinks can only be called on net instances in the same RENEW process. The
DISTRIBUTE plugin adds another downlink inscription that can be called on remote net
instance references. It connects to the same uplinks. However, all parameters must be fully
evaluated at the transition with the downlink before the connection is made. If this is not
possible, no binding will be found and the transitions will not fire. This means that the data
can only flow to the called uplink transition. The new downlink inscription uses a !/ in the
place of the : of the original downlink inscriptionE Parameters of send channels are send
by RMI and thus need to be of special types. They need to be either serializable, or RMI
remote objects.

The synchronize transition of the sender in Figure calls the synchronize transition
of the receiver in Figure 2.1l The string foo is fully evaluated by the sender, before it is send.
In the receiver it is unified with str variable and put out to the received place.

2.3 Return Expressions

Even though the send channels provided by the DISTRIBUTE plugin do not offer the same
flexibility in data flow as the synchronous channels, they can be used for simple bidirectional
data flow. Downlinks and uplinks can be extended by a return expression analogous to a
return value in a Java function. By using a tuple multiple values can be returned. A return
expression can only be added to send channel downlinks (written with / instead of :). On
the other side any uplink may have a return expression (uplinks are not separated). The
expression is appended to send channel downlinks with an -> arrow to indicate that the data
flows out of the channel call. It is appended to uplinks with an <- arrow to indicate that the
data flows back to the origin of the channel call.

The uplink transitions return expression has to be fully evaluated at that transition,
because the result is send back to the downlink transition. This is analogous to how the
parameters have to be fully evaluated at the downlink transition, but the result is send in
the opposite direction.

The receiver example net in Figure [Z3] extends the one in Figure 2.1l by sending back the
string bar in addition to storing the received string. The sender example net in Figure 2.4]
extends the one in Figure 221 by storing the returned string in addition to sending the string

foo.

2The same search algorithm is used to search for bindings of a single transition and for bindings of multiple
transitions. A transition with the uplink is merely added to the search after unifying the channel parameters
at both sides.

3Based on popular convention, the ! indicates that the data flows into the call.



import de.renew.distribute.DistributePlugin;

action DistributePlugin.getRegistry()
.registerNetlnstance("return_receiver",
DistributePlugin.wrap(this));
register

:s(str) <- "bar" received
synchronize

Figure 2.3: A receiver net with a channel uplink with a return expression.

import de.renew.distribute.DistributePlugin;
import de.renew.distribute.DistributeNetInstance;
DistributeNetInstance ni;

String str;

action ni = DistributePlugin.getRegistry()
.getNetInstance("return_receiver");
retrieve child instance
ni

ni

nils("foo") -> str returned

synchronize

Figure 2.4: A sender net with a send channel downlink with a return expression.



Bibliography

[1] Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.

[2] Olaf Kummer, Frank Wienberg, Michael Duvigneau, and Lawrence Cabac. Renew —
User Guide (Release 2.4.8). University of Hamburg, Faculty of Informatics, Theoretical
Foundations Group, Hamburg, September 2015.

[3] Michael Simon. Concept and implementation of distributed simulations in RENEw. Bache-
lor thesis, University of Hamburg, Department of Informatics, Vogt-Kolln Str. 30, D-22527
Hamburg, March 2014.



	Setup
	Running Multiple Connected Renew Processes
	(De)activation

	Modeling
	Exchanging Remote Net Instances
	Send Channels
	Return Expressions


